About WEF

Formed in 1928, the Water Environment Federation (WEF) is a not-for-profit technical and educational organization with 32,000 individual members and 80 affiliated Member Associations representing an additional 50,000 water quality professionals throughout the world. WEF and its member associations proudly work to achieve our mission of preserving and enhancing the global water environment.

For information on membership, publications, and conferences, contact

Water Environment Federation
601 Wythe Street
Alexandria, VA 22314-1994 USA
(703) 684-2400
http://www.wef.org

IMPORTANT NOTICE

The material presented in this publication has been prepared in accordance with generally recognized engineering principles and practices and is for general information only. This information should not be used without first securing competent advice with respect to its suitability for any general or specific application.

The contents of this publication are not intended to be a standard of the Water Environment Federation (WEF) and are not intended for use as a reference in purchase specifications, contracts, regulations, statutes, or any other legal document.

No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by WEF.

WEF makes no representation or warranty of any kind, whether expressed or
implied, concerning the accuracy, product, or process discussed in this publication and assumes no liability.

Anyone using this information assumes all liability arising from such use, including but not limited to infringement of any patent or patents.

Copyright © 2007 by the Water Environment Federation
All Rights Reserved.

Water Environment Research, WEF, and WEFTEC are registered trademarks of the Water Environment Federation.
Manuals of Practice of the Water Environment Federation

The WEF Technical Practice Committee (formerly the Committee on Sewage and Industrial Wastes Practice of the Federation of Sewage and Industrial Wastes Associations) was created by the Federation Board of Control on October 11, 1941. The primary function of the Committee is to originate and produce, through appropriate subcommittees, special publications dealing with technical aspects of the broad interests of the Federation. These publications are intended to provide background information through a review of technical practices and detailed procedures that research and experience have shown to be functional and practical.

Water Environment Federation Technical Practice
Committee Control Group

B. G. Jones, Chair
J. A. Brown, Vice-Chair

S. Biesterfeld-Innerebner
R. Fernandez
S. S. Jeyanayagam
Z. Li
M. D. Nelson
S. Rangarajan
E. P. Rothstein
A. T. Sandy
A. K. Umble
T. O. Williams
J. Witherspoon
Contents

Chapter 33 Dewatering

Introduction

What Makes Biosolids Difficult to Dewater?

Difficulty in Dewatering Biosolids

Free Water

Bound Water

Vicinal Water

Interstitial Water

Capillary Water

Improving the Quality of Biosolids

Tracking Down the Cause of a Change

Thinking Ahead: Inorganic Chemical Addition to Achieve Class A Biosolids

Limit Before Dewatering

Limit After Dewatering

Safety

Obtaining Help

Knowledgeable Experts

Suppliers

Water Environment Federation

U.S. Environmental Protection Agency

Operating Principles for Dewatering

Management of Information
Changing Values

Inorganic Chemical Addition

Ferric Chloride and Alum

Struvite Control

Odor Control Chemicals

Buying Chemicals

Organic Flocculants

Background

Polymer Characteristics

Electronic Charge (Type)

Charge Density

Molecular Weight

Polymer Forms and Storage and Handling

Dry Polyacrylamide

Emulsion Polyacrylamide

Solution Polyacrylamide

General Safety

Polymer Specifications and Quality Control

Active Polymer Content

Charge Density

Standard Viscosity

Product Make-Down

Dry Polyacrylamide
Emulsion Polyacrylamide

Polymer Degradation

Sludge Conditioning

Performance Optimization (Dewatering)

Cost of Polymer

Cost of Sludge Disposal or Downstream Processing

Cost of Recycle (Capture)

Throughput (Feed Rate)

Automation

Polymer Selection

Outline for Conducting Effective Polymer Evaluations and Product Selection

Case Histories

Trial Conditions (Sludge and Equipment Management)

Barge Transfers of Sludge

Managing In-Plant Sludge Transfers

Managing Sludge Transfers from Digesters

Equipment and Design Limitations

Equipment Limitations

Trial Management

Real-Time Analyses and Data

Manipulation of Trial Design

Trial Management (Sludge Manipulation)
Trial Management (Sampling and Analysis)

Trial Management (Sampling)

Conclusion

Air-Drying Biosolids

Principles of Operation

Reed Beds

Sand Beds

Vacuum-Assisted Drainage Beds

Paved Beds

Paved Beds with Sand Drains

Process Variables

Feed Solids Type and Quality

System Design

Chemical Conditioning

Process Control—Reed Beds

Troubleshooting

Sand Beds and Paved Beds

Sand Beds

Vacuum-Assisted Drying Beds

Mechanical Dewatering Equipment

General

Dewatering Capability of Dewatering Equipment

Installation Considerations
Biosolids Feed-Pump Considerations

Conveyance of Dewatered Biosolids

Additives

General Calculations for Mechanical Dewatering

 Nomenclature

 Polymer Dosage

Belt Filter Press

 Principles of Operation

 Process Variables

 Biosolids Type and Quality

 Polymer Activity

 Polymer Addition and Mixing

 Cake Dryness

 Polymer Type and Dosage

 Hydraulic Loading

 Solids Loading

 Capture

 Mechanical Variables

Sequence of Operation

Belt Filter Press Optimization and Troubleshooting

 Low Cake Solids

 Low Capture Rates

 Low Solids Loading
Maintenance

Safety Considerations

Dewatering Centrifuges

Principles of Operation

Math Specific to Centrifuges

Process Variables

- Biosolids Type and Quality
- Polymer Activity and Mixing with the Biosolids
- Cake Dryness
- Polymer Type and Dosage

Performance Level

Differential Speed—Scroll Torque

Torque Control

Bowl Speed

Weir Setting

Polymer Addition Point

Operation

Sequence of Operation

Centrifuge Data Sheet

Temperature Effects

Process Control

Troubleshooting

Obtaining Dryer Cakes
Reducing the Polymer Consumption

Increasing Capacity

Vacuum and Pressure Filters

Inorganic Chemical Conditioning

Lime

Dosage Requirements

Other Types of Conditioners

Pressure Filters

Principles of Operation

Principles of Conditioning

Inorganic Chemical Conditioning

Ferric Salts

Lime

Process Variables—Chemical Conditioning

Process Control

Troubleshooting

Startup and Shutdown Procedures

Safety Concerns

Maintenance Considerations

Vacuum Filters

Principles of Operation

Process Variables

Preventive Maintenance
Lubrication

Bearings

Repairs

Dealing with the Repair Shop

Data Collection and Laboratory Control

Safety and Housekeeping

References
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 33.1—Typical points of addition of organic flocculants in wastewater treatment</td>
<td></td>
</tr>
<tr>
<td>Figure 33.2—Typical wastewater treatment flow diagram</td>
<td></td>
</tr>
<tr>
<td>Figure 33.3—Types of organic flocculants according to electronic charge density and molecular weight</td>
<td></td>
</tr>
<tr>
<td>Figure 33.4—Dose-response curve of manipulated trial data</td>
<td></td>
</tr>
<tr>
<td>Figure 33.5—Typical dose–response curves</td>
<td></td>
</tr>
<tr>
<td>Figure 33.6—Reed harvesting in the spring</td>
<td></td>
</tr>
<tr>
<td>Figure 33.7—Sand bed details</td>
<td></td>
</tr>
<tr>
<td>Figure 33.8—Plant view of a vacuum-assisted drying bed system</td>
<td></td>
</tr>
<tr>
<td>Figure 33.9—Cross-section of a wedge-wire drying bed</td>
<td></td>
</tr>
<tr>
<td>Figure 33.10—Paved beds</td>
<td></td>
</tr>
<tr>
<td>Figure 33.11—Filtration process</td>
<td></td>
</tr>
<tr>
<td>Figure 33.12—Belt filter press process flow diagram</td>
<td></td>
</tr>
<tr>
<td>Figure 33.13—Centrifuge cutaway</td>
<td></td>
</tr>
<tr>
<td>Figure 33.14—Centrifuge disassembly</td>
<td></td>
</tr>
<tr>
<td>Figure 33.15—Differential head pressure</td>
<td></td>
</tr>
<tr>
<td>Figure 33.16—Plate and frame press</td>
<td></td>
</tr>
<tr>
<td>Figure 33.17—Fixed-volume recessed plate filter press</td>
<td></td>
</tr>
</tbody>
</table>
Figure 33.18—Fixed-volume recessed plate filter press

Figure 33.19—Plate drainage holes behind cloth on fixed-volume recessed plate filter press

Figure 33.20—Schematic of typical filter press system

Figure 33.21—Operating zones in a rotary vacuum filter
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 33.1—Charge density</td>
<td></td>
</tr>
<tr>
<td>Table 33.2—Molecular weight</td>
<td></td>
</tr>
<tr>
<td>Table 33.3—Data from polymer evaluation demonstrating manipulation of trial design</td>
<td></td>
</tr>
<tr>
<td>Table 33.4—Troubleshooting guide for sand beds</td>
<td></td>
</tr>
<tr>
<td>Table 33.5—Belt filter press data sheet</td>
<td></td>
</tr>
<tr>
<td>Table 33.6—Example centrifuge data sheet</td>
<td></td>
</tr>
<tr>
<td>Table 33.7—Troubleshooting for centrifuges</td>
<td></td>
</tr>
<tr>
<td>Table 33.8—Typical conditioning dosages of ferric chloride and lime for municipal wastewater sludges</td>
<td></td>
</tr>
<tr>
<td>Table 33.9—Troubleshooting guide for pressure filtration</td>
<td></td>
</tr>
</tbody>
</table>
Preface

This sixth edition of this chapter was produced under the direction of Michael D. Nelson, Chair. The principal authors of this chapter are Peter L. LaMontagne, P.E., and Wayne Laraway.

The 6th edition of Chapter 33 reflects the changes in dewatering technology over the last decade or more. Vacuum filters are uncommon now, supplanted by belt filters and centrifuges. Drying beds are less popular but reed beds are increasing, an example of “green” technology. The industry is more dependant on polymers, and this section is greatly expanded. The goal of this chapter has been to explain how the various dewatering processes work so that readers can understand them and perhaps better operate the process in their own plants.

Authors' and reviewers' efforts were supported by the following organizations:

East Norriton-Plymouth-Whitpain Joint Sewer Authority, Plymouth Meeting, Pennsylvania
Hazen and Sawyer, PC, Raleigh, North Carolina
Mike Nelson Consulting Services LLC, Churchville, Pennsylvania
Nolte Associates, San Diego, California
Peter LaMontagne, P.E., New Britain, Pennsylvania