Chapter 13

Biofilm Reactor Technology and Design

1.0 INTRODUCTION: BIOFILMS AND BIOFILM REACTORS IN MUNICIPAL WASTEWATER TREATMENT 13-5

1.1 Biofilm Reactor Compartments 13-8
1.2 Biofilm Processes, Structure, and Function 13-8
1.3 Bulk-Liquid Hydrodynamics 13-10
1.4 Biofilm Development and Detachment 13-12

2.0 BIOFILM REACTOR DESIGN APPROACHES, CONSIDERATIONS 13-15

2.1 Simplified Biofilm Reactor Design Approaches 13-16
2.1.1 Graphical Procedure 13-17
2.1.2 Empirical and Semi-Empirical Models 13-20

2.2 Mathematical Biofilm Models for the Practitioner 13-23
2.2.1 Why Should We Use Biofilm Models as a Design Tool? 13-23
2.2.2 Diffusion and Reaction in a One-Dimensional Biofilm: First- and Zero-Regions in Biofilm Reactors 13-25
2.2.3 Identifying the Rate-Limiting Substrate 13-29
2.2.4 Biofilm Models Used in Engineering Design 13-31
2.2.5 Limitations of Biofilm Models for the Practitioner 13-33
2.2.6 Wastewater Characterization 13-35

3.0 MOVING BED BIOFILM REACTORS 13-36

3.1 General Description 13-38
3.1.1 Plastic Biofilm Carriers 13-39
3.1.2 Media Retention Sieves 13-42
3.1.3 Aeration System 13-43
3.1.4 Mechanical Mixing Devices 13-44

3.2 Process Flow Sheets and Bioreactor Configurations 13-44
3.2.1 Carbon Oxidation 13-45
3.2.2 Nitrification 13-49
3.2.3 Denitrification 13-58
3.2.4 Phosphorus Limitations (Focus on Denitrification) 13-64

3.3 Design Considerations 13-66
3.3.1 Preliminary and Primary Treatment 13-66
3.3.2 Plastic Biofilm Carrier Media 13-66
3.3.3 Aeration System 13-68
3.3.4 Media Retention Sieves 13-70
3.3.5 Mechanical Mixing 13-71
3.3.6 Solids Separation 13-72

4.0 BIOLOGICALLY ACTIVE FILTERS 13-73
4.1 Biologically Activate Filter Configurations 13-74
 4.1.1 Downflow with Sunken Media 13-77
 4.1.2 Upflow with Sunken Media 13-79
 4.1.3 Upflow Biologically Activate Filter with Floating Media 13-81
 4.1.4 Moving Bed, Continuous Backwash Filters 13-82
 4.1.5 Non-Backwashing, Open-Structure Media Filters 13-84
4.2 Media for Use in Biologically Activated Filter Reactors 13-87
4.3 Backwashing and Air Scouring 13-87
4.4 Biologically Activated Filter Process Design 13-88
 4.4.1 Secondary Treatment 13-90
 4.4.2 Nitrification 13-94
 4.4.3 Combined Nitrification and Denitrification 13-97
 4.4.4 Tertiary Denitrification 13-99
 4.4.5 Phosphorus Removal Considerations 13-104
4.5 Facility Design Considerations for Biologically Activated Filter Plants 13-105
 4.5.1 Preliminary and Primary Treatment 13-105
 4.5.2 Backwash Handling Facilities 13-105
 4.5.3 Process Aeration 13-106
 4.5.4 Supplemental Carbon Feed Facilities 13-109

5.0 EXPANDED AND FLUIDIZED BED BIOFILM REACTORS 13-109
5.1 Fluidized Bed Biofilm Reactor Advantages and Disadvantages 13-112
5.2 Fluidized Bed Biofilm Reactor Technology Status 13-115
 5.2.1 History 13-115
 5.2.2 Installations 13-115
5.3 Process Design 13-116
 5.3.1 Typical Design Parameters 13-116
 5.3.1.1 Vertical Flow Velocity 13-116
 5.3.1.2 Recirculation 13-117
 5.3.1.3 Flow Distribution 13-118
 5.3.2 Media 13-120
 5.3.3 Biofilm Thickness Control 13-124
 5.3.4 Aeration 13-125
5.4 Pilot Testing
5.5 Fluidized Bed Biofilm Reactor Design Models
5.6 Design Considerations
 5.6.1 Nitrification
 5.6.2 Tertiary Denitrification
5.7 Design Example for Denitrification
5.8 Performance of Fluidized Bed Biofilm Reactor Fauna
5.9 Process Performance
 5.9.1 Nitrogen Removal Rate
 5.9.2 Temperature
6.0 ROTATING BIOLOGICAL CONTACTORS
 6.1 Introduction
 6.2 Carbon Oxidation
 6.2.1 Monod Kinetic Model
 6.2.2 Second-Order Model
 6.2.3 Empirical Model
 6.3 Nitrification
 6.4 Media and Media Support Shaft
 6.5 Covers
 6.6 Biofilm Thickness Control
7.0 TRICKLING FILTERS
 7.1 General Description
 7.1.1 Distribution System
 7.1.2 Biofilm Carriers
 7.1.3 Containment Structure
 7.1.4 Underdrain System and Ventilation
 7.1.5 Trickling Filter Pumping Station
 7.1.6 Hydraulic and Pollutant Loading
 7.2 Process Flow Sheets and Bioreactor Configuration
 7.2.1 Process Flow Diagrams
 7.2.2 Bioreactor Classification
 7.2.3 Hydraulics
 7.3 Oxygen Requirements and Air Supply Alternatives
 7.3.1 Natural Draft
 7.3.2 Forced Ventilation
 7.4 Trickling Filter Design Models
 7.4.1 National Research Council Formula
 7.4.2 Galler and Gotaas Formula
8.2 Suspended-Biofilm Reactors 13-210
 8.2.1 Reactors Based on Aerobic Granules 13-210
 8.2.2 Anammox Biofilm Reactors 13-211
 8.2.3 Biofilm Airlift Reactors 13-212
 8.2.4 Internal Circulation Reactor 13-213

9.0 REFERENCES 13-214